Extremal Vector Valued Inequalities for Hankel Transforms
نویسندگان
چکیده
The disc multiplier may be seen as a vector valued operator when we consider its projections in terms of the spherical harmonics. In this form, it represents a vector valued Hankel transform. We know that, for radial functions, it is bounded on the spaces Lplq (r n−1 dr) when 2n n+1 < p, q < 2n n−1 . Here we prove that there exist weak-type estimates for this operator for the extremal exponents, that is, it is bounded from Li lq (r n−1 dr) to Lpi,∞ lq (r n−1 dr) for i = 0, 1 when p0 = 2n n+1 , p1 = 2n n−1 , p0 < q < p1, and we consider radial functions.
منابع مشابه
Weighted norm inequalities for integral transforms
Weighted (L, L) inequalities are studied for a variety of integral transforms of Fourier type. In particular, weighted norm inequalities for the Fourier, Hankel, and Jacobi transforms are derived from Calderón type rearrangement estimates. The obtained results keep their novelty even in the simplest cases of the studied transforms, the cosine and sine Fourier transforms. Sharpness of the condit...
متن کاملPseudoconvex Multiobjective Continuous-time Problems and Vector Variational Inequalities
In this paper, the concept of pseudoconvexity and quasiconvexity for continuous~-time functions are studied and an equivalence condition for pseudoconvexity is obtained. Moreover, under pseudoconvexity assumptions, some relationships between Minty and Stampacchia vector variational inequalities and continuous-time programming problems are presented. Finally, some characterizations of the soluti...
متن کاملOn the Sum of Superoptimal Singular Values
In this paper, we study the following extremal problem and its relevance to the sum of the so-called superoptimal singular values of a matrix function: Given an m × n matrix function Φ, when is there a matrix function Ψ * in the set A n,m k such that Z T trace(Φ(ζ)Ψ * (ζ))dm(ζ) = sup Ψ∈A n,m k ˛ ˛ ˛ ˛ Z T trace(Φ(ζ)Ψ(ζ))dm(ζ) ˛ ˛ ˛ ˛ ? The set A n,m k is defined by A n,m k def = n Ψ ∈ H 1 0 (Mn...
متن کاملFrame Multiplication Theory and a Vector - Valued Dft and Ambiguity Function
Vector-valued discrete Fourier transforms (DFTs) and ambiguity functions are defined. The motivation for the definitions is to provide realistic modeling of multi-sensor environments in which a useful time-frequency analysis is essential. The definition of the DFT requires associated uncertainty principle inequalities. The definition of the ambiguity function requires a component that leads to ...
متن کاملToeplitz and Hankel Operators on a Vector-valued Bergman Space
In this paper, we derive certain algebraic properties of Toeplitz and Hankel operators defined on the vector-valued Bergman spaces L2,C n a (D), where D is the open unit disk in C and n ≥ 1. We show that the set of all Toeplitz operators TΦ,Φ ∈ LMn(D) is strongly dense in the set of all bounded linear operators L(L2,Cn a (D)) and characterize all finite rank little Hankel operators.
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره شماره
صفحات -
تاریخ انتشار 2014